Cellular response of antioxidant metalloproteins in Cu/Zn SOD transgenic mice exposed to hyperoxia.

نویسندگان

  • M A Levy
  • Y H Tsai
  • A Reaume
  • T M Bray
چکیده

Ceruloplasmin, metallothionein, and ferritin are metal-binding proteins with potential antioxidant activity. Despite evidence that they are upregulated in pulmonary tissue after oxidative stress, little is known regarding their influence on trace metal homeostasis. In this study, we have used copper- and zinc-containing superoxide dismutase (Cu/Zn SOD) transgenic-overexpressing and gene knockout mice and hyperoxia to investigate the effects of chronic and acute oxidative stress on the expression of these metalloproteins and to identify their influence on copper, zinc, and iron homeostasis. We found that the oxidative stress-mediated induction of ceruloplasmin and metallothionein in the lung had no effect on tissue levels of copper, iron, or zinc. However, Cu/Zn SOD expression had a marked influence on hepatic copper and iron as well as circulating copper homeostasis. These results suggest that ceruloplasmin and metallothionein may function as antioxidants independent of their role in trace metal homeostasis and that Cu/Zn SOD functions in copper homeostasis via mechanisms distinct from its superoxide scavenging properties.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The gene structure of Cu/Zn-superoxide dismutase from sweet potato.

SODs (superoxide:superoxide oxidoreductase, EC 1.15.1.1) catalyze the dismutation of superoxide to dioxygen and hydrogen peroxide to protect organisms from oxidative damage (Hassan, 1984). SODs are metalloproteins that are classified into three types (Mn-, Fe-, and Cu/Zn-SOD) depending on the metal found in the active site. In plants, the most prominent SODs are Cu/Zn isozymes. It has been show...

متن کامل

Mice that overexpress Cu/Zn superoxide dismutase are resistant to allergen-induced changes in airway control.

Within the respiratory epithelium of asthmatic patients, copper/zinc-containing superoxide dismutase (Cu/Zn SOD) is decreased. To address the hypothesis that lung Cu/Zn SOD protects against allergen-induced injury, wild-type and transgenic mice that overexpress human Cu/Zn SOD were either passively sensitized to ovalbumin (OVA) or actively sensitized by repeated airway exposure to OVA. Controls...

متن کامل

Absolute quantification of superoxide dismutase in cytosol and mitochondria of mice hepatic cells exposed to mercury by a novel metallomic approach.

In the last years, the development of new methods for analyzing accurate and precise individual metalloproteins is of increasing importance, since numerous metalloproteins are excellent biomarkers of oxidative stress and diseases. In that way, methods based on the use of post column isotopic dilution analysis (IDA) or enriched protein standards are required to obtain a sufficient degree of accu...

متن کامل

Extracellular superoxide dismutase in the airways of transgenic mice reduces inflammation and attenuates lung toxicity following hyperoxia.

Extracellular superoxide dismutase (EC-SOD, or SOD3) is the major extracellular antioxidant enzyme in the lung. To study the biologic role of EC-SOD in hyperoxic-induced pulmonary disease, we created transgenic (Tg) mice that specifically target overexpression of human EC-SOD (hEC-SOD) to alveolar type II and nonciliated bronchial epithelial cells. Mice heterozygous for the hEC-SOD transgene sh...

متن کامل

Neonatal hyperoxia alters the host response to influenza A virus infection in adult mice through multiple pathways.

Exposing preterm infants or newborn mice to high concentrations of oxygen disrupts lung development and alters the response to respiratory viral infections later in life. Superoxide dismutase (SOD) has been separately shown to mitigate hyperoxia-mediated changes in lung development and attenuate virus-mediated lung inflammation. However, its potential to protect adult mice exposed to hyperoxia ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Lung cellular and molecular physiology

دوره 281 1  شماره 

صفحات  -

تاریخ انتشار 2001